APPROXIMATE EQUATION OF STATE
OF CONDENSED SUBSTANCES

G. A. Bogachev UDC 534,222

The functions entering into the equation of state of Mie—Gruneisen solids are constructed
approximately. In [1] an approximate equation of state was proposed for solids whose adia-
batic curves obey a linear relationship between the velocity of the shock wave D and the
mass velocity U; the slope of the shock adiabatic curve was equal to 1.5, In the present
work, the dimensionless variables proposed in {2] are used to construct an equation of state
which is free from the above-mentioned limitation. The equation of state found is used to
make calculations of the shock compression of porous metals, in particular, of copper, with
values of the porosity not differing significantly from unity.

1. Approximate Equation of State of Solids

In [1] an analytical expression is given for the generalized Hugoniot shock adiabatic curve for mate-
rials with a linear dependence between the velocity of the shock wave and the mass velocity of the sub~
stance, of the form

D=a+bU, (1.1)

where ¢ and b are experimentally measured constant quantities. This linear connection, as is shown in
[2], corresponds to dimensionless variables, making it possible to write the shock adiabatic curve in com-
pact form:

pg=z(1—2)=*. (1.2)
Here py (the dimensionless pressure at the Hugoniot adiabatic curve) and x are determined by the
equalities
pa=Pp/Pe, Po=poalb, x=2/z;,
where z = l—po/p is the relative compressibility of the substance; p, and p are the initial and final densities
of the solid; zy, =1/b is the limiting value of the relative compressibility [3]. Thus, the variable x denotes
the relative fraction of the compressibility out of the maximally possible; R is the so-called characteristic

pressure, which can be interpreted either as the resistance of the material to shock compression or as the
impact viscosity [2].

The connection, described by the relationship (1.2), between the shock compressibility of the mate-
rial and the pressure for various materials is represented by exactly the same point in the (Pg, x) plane.

From Eq. (1.1) and the laws of conservation at the front of the shock wave an expression is obtained
for the dimensionless specific internal energy at the Hugoniot adiabatic curve in the form

ep=1/22pg, 1.3)

where the notation e = EH/(az/bZ). In formulas (1.2), (1.3), we neglect the initial pressure and the initial
internal energy of the substance ahead of the shock wave.

If the relationship (1.1) is observed up to very large pressures, it then follows from (1.2), (1.3) that
the compression of the substance tends, as is required, toward the limiting value x, =1.
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In solids, the specific internal energy and the pressure are usually separated into a thermal part
and a cold part (€co, Pag)s connected with the deformation of the crystalline lattice, The connection be-
tween the thermal pressure and the energy is established by an equation, known as the Mie—Gruneisen
equation [4]:

P—Po_ %
= Te
e — oy gp U3

(1.4)

Here pg, and £qq are represented in dimensionless form as py and £y; vy is the Gruneisen coefficient,
depending only on the specific volume [5]. From the definition of the variables z and x it follows that the
denominator in the right-hand part of (1.4) does not revert to zero (with the exception of the case of the
limiting compression of sapphire, for which b=1; in the remaining solids investigated, b is strictly greater
than unity [2]). Since pgq and g¢p are taken at the isotherm of absolute zero, the following connection will
exist between them:

de 5 R gr=0. (1.5)

Using Eq. (1.4), which must be satisfied at the Hugoniot adiabatic curve, and relationship (1.5) we
obtain the linear differential equation
d: L)
;:O biz co™ P bizeﬂ- (1.6)

The solution of this equation with the initial condition £, (0) =0 has the form

X

v T
dx —-Smdx

b—x i
Y _ 6
Efz)=¢e §(pH b_er)e ’ dz.

The integrals entering into this formula can be calculated with definite assumptions with respect to
the form of the function y (x). The analytical form of £,,(x), with constant y and the following partial values
of the parameters b=1.5 and y =1 or vy =2, is given in [1].

If relationships (1.1), (1.4) are valid up to very large pressures, we can find the limiting value y %o
With compression of a substance by very strong shock waves, starting from some pressure the thermal
parts of the pressure and the energy considerably exceed Peo and £o4. We therefore have

Pg—>
Ya= (0 — D) B0 (b —2,) E 2 (b — z,) [ 7, (1.7)

H co H
Since it has been previously found that x« =1, then from (1.9) we obtain

Ve =2(b—1). (1.8)

This expression coincides with the analogous formula from [1]. We note that, with compression of a
substance by shock waves, the functions of pyg and €., must be known as exactly as possible only up to
moderate compressions, since with large compressions their contribution to Eq. (1.4) is negligibly small,

Equation (1.6) can be solved approximately by expansion of the functions entering into it in series in
terms of the small parameter x. As a result of integration we have

2 2 i
ECO=T+—-3—I3+'1—2( ——%0-)14"}‘... . (1-9)
From this and from (1.5} we find
pco=x+2x’—{—( ——%—)xa-l—.., (1.10)

For purposes of comparison, we carry out expansions of £py and Py
ep=1/2(24 223 +324+...), pu=z-+228+325+...
The coefficients in the series obtained have a simpler form than in the corresponding formulas of [1],

As can be seen from (1.9), (1.10), the constant vy (the first term in the expansion of v with respect
to x) enters only into the coefficients with x* and x5, respectively, in the expressions for €0 and peg, o€,

v starts to play a significant role only for values of x which are sufficiently close to um’cy In view of this,
the value of y in the expression for the elastic energy (1.9) is considerable for moderate compressions,
while, with large compressions, the elastic component itself is insignificant, Therefore, in expansion (1.9)
we can limit ourselves to the first term and write '
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— 2
s 1/222. (1.11)
As a basis for approximate constructions of the equation of state of substances, we take this expres-
sion and an expansion of peg up to the second order of x, i.e.,
Pegmet2at. (1.12)

In this approximation, from (1.6) for v we obtain the expression
v=2(b—1)(3—22)/(2—z), (1.13)

which, with small and moderate compressions, is almost constant, and with large compressions, tends to-
ward the limiting value v, (1.8). Thus, we have completed the construction of all the functions entering
into the Mie—Gruneisen equation of state of solids (1.4).

The expressions for €54, Pgg, and v from (1.11)-(1.13) differ from the corresponding formulas of {1].
For example, in the notation of [1], expression (1.11) can be represented in the form €,,=1/2b%%/(1 +9),
while, at the same time, in [1] the following expression is obtained: £,,=1.2b%%(6=2/(1—z)). Comparison
of these relationships shows that, with a sufficiently small value of 6, both formulas should give close re-
sults. With other values of 0, the difference may be found to be considerable,

2. Shock Adiabatic Curve of a Porous Substance

Let us use the approximate Mie— Gruneisen equation of state obtained to calculate the shock adiabatic
curve of a porous substance. An analytical expression of this adiabatic curve is given in [4] under the
assumptions that the electronic pressure and energy are small, the Gruneisen coefficient is constant, and
the initial energy can be neglected.

When the compression of a porous substance takes place with a rather large pressure (for porous
copper above 26 kbar [6]), the details of the collapse of the pores become insignificant for predicting the
final state of the porous substance. If, further, we neglect the contribution of the pores to the total pres-
sure and the internal energy of the system, and use the Mie—Gruneisen equation of state (1.4), then the
shock adiabatic curve of a porous substance can be written in the form [6]

Py = (h—1) pcé.x) —2 [sc(g.z) —bsT (zg, To)} /(b —2) , (2.1)
h— =

where h=1+2/yx); T is the absolute temperature; m:VO/VOO is the initial porosity of the substance; V,
and Vyyare the initial volumes of monolithie and porous samples, respectively. The subscript zero denotes
the initial state. As is well known {4], there exists a limiting volume Vlt:VOO/ h, up to which a porous sub-
stance can be compressed. If Vy, is less than V,, which is true with a small porosity, when V,,/V< h, then
the shock adiabatic curves have a normal course; they lie higher the greater the initial specific volume
V. For copper, with the parameters given in Table 1, (1.13) is used to obtain the evaluation hy,in ™ 1.445.
Calculations will be made below of the shock adiabatic curves of porous samples of copper with Vy/V,<
1.21, i.e., for which the inequality V/V,< h is clearly satisfied.

TABLE 1
~ | Pa ] | Qs 3 {ter-
gt%%celg/c%n* km/sec l b l U, km/sec Ié'ﬁ?‘re

3,94 ‘1,489' 0<U<2,5! [¢]

Cu I 8,93
TABLE 2
m=1 . 0,88 m=>0,82
U, D, ] U, D, _ U, D.
km/ sec ' km/sec | km/sec| km/sec| * | km/sec jkm/sec]
0,213 4,257 0,07 0,321 1,945 0,04 0,441 1,875 | 0,04
0,463 4,629 0,15 0,513 2,702 0,07 0,701 2,695 | 0,07
0,761 5,073 0,22 0,708 3.291 0,11 0,967 3,292 | 0,11
1,422 5,611 0,30 0,917 3,822 0,15 1,263 4,073 | 0,15
1,569 6,276 0,37 1,150 4,341 0,19 1,608 4,799 | 0,19
2,136 7,121 0,45 1,415 4,881 0,22 2,027 5,631 | 0,22
2.880 8.228 0,52 1,723 5,469 0,26 2,563 6,658 | 0,26
2,086 6,137 0,30
2,529 6.929 0,34
2,086 7,912 0,37
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Let us consider porous samples with a small initial porosity, neglecting the initial thermal energy
e in (2.1). Substituting into (2.1) the expressions for pgg, €¢o, and v from (1.12), (1.13), we represent
py as a function of x. Using (2.1), we find, for example, shock adiabatic curves for porous copper, with
different values of the initial porosity m [6]. The parameters of copper given in Table 1 were used in cal-
culation of these adiabatic curves,

The results of calculations of the Hugoniot shock adiabatic curves, together with the corresponding
values of the parameter x, are given in Table 2 in terms of the variables D and U, the transition to which
is effected using the laws of conservation at the front of the shock wave: pH=DU/V0, z=U/D. Figure 1
illustrates the dependence of D on U with different values of the initial porosity., Curves 1-3 correspond
to the values m=1, 0.88, 0.82. For purposes of comparison, the same figure gives experimental data taken
from [5]. As can be seen from the figure, the agreement between the theoretical and experimental num-
bers is completely satisfactory.

Calculations of shock adiabatic curves, carried out with large values of the porosity, led to results
differing from the experimental, Taking account of the thermal energy & in formula (2.1), as is shown
in [6], eliminates this divergence.

The author wishes to express his indebtedness to the remarks of V, N. Nikolaevskii, who drew the
author's attention to [1].
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